A non-commutative Yosida-Hewitt theorem and convex sets of measurable operators closed locally in measure

dc.contributor.authorDodds, Peter Gerard
dc.contributor.authorDodds, Theresa Kee-Yu
dc.contributor.authorSukochev, Fyodor Anatolievich
dc.contributor.authorTikhonov, O E
dc.date.accessioned2010-07-27T05:42:04Z
dc.date.available2010-07-27T05:42:04Z
dc.date.issued2005en_US
dc.identifier.citationDodds, P.G., Dodds, T.K., Sukochev, F.A., & Tikhonov, O.E., 2005. A non-commutative Yosida-Hewitt theorem and convex sets of measurable operators closed locally in measure. Positivity, 9(3), 457-484.en
dc.identifier.doihttps://doi.org/10.1007/s11117-005-1384-0en
dc.identifier.issn1385-1292en_US
dc.identifier.rmid2005101085en_US
dc.identifier.urihttp://hdl.handle.net/2328/8445
dc.subject.forgroup0101 Pure Mathematicsen_US
dc.subject.forgroup0102 Applied Mathematicsen_US
dc.titleA non-commutative Yosida-Hewitt theorem and convex sets of measurable operators closed locally in measureen_US
dc.typeArticleen_US
Files