Redundant-target processing is robust against changes to task load

Loading...
Thumbnail Image
Date
2018-02-21
Authors
Morey, Stephanie A
Thomas, Nicole A
McCarley, Jason S
Journal Title
Journal ISSN
Volume Title
Publisher
Springer Open
Rights
© The Author(s) 2018
Rights Holder
The Author(s)
Abstract
Monitoring visual displays while performing other tasks is commonplace in many operational environments. Although dividing attention between tasks can impair monitoring accuracy and response times, it is unclear whether it also reduces processing efficiency for visual targets. Thus, the current three experiments examined the effects of dual-tasking on target processing in the visual periphery. A total of 120 undergraduate students performed a redundant-target task either by itself (Experiment 1a) or in conjunction with a manual tracking task (Experiments 1b–3). Target processing efficiency was assessed using measures of workload resilience. Processing of redundant targets in Experiments 1–2 was less efficient than predicted by a standard parallel race model, giving evidence for limited-capacity, parallel processing. However, when stimulus characteristics forced participants to process targets in serial (Experiment 3), processing efficiency became super-capacity. Across the three experiments, dual-tasking had no effect on target processing efficiency. Results suggest that a central task slows target detection in the display periphery, but does not change the efficiency with which multiple concurrent targets are processed.
Description
This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Keywords
Capacity coefficient, Limited capacity, Multi-task, Redundancy gain, Redundant signals effect, Super capacity, Target detection, Workload capacity, Workload resilience
Citation
Morey, S. A., Thomas, N. A., & McCarley, J. S. (2018). Redundant-target processing is robust against changes to task load. Cognitive Research: Principles and Implications, 3(1). https://doi.org/10.1186/s41235-017-0088-x