Australian Research Council (ARC)
Permanent URI for this collection
This is a collection of ARC-funded research publications authored by Flinders academics.
Browse
Browsing Australian Research Council (ARC) by Subject "Artificial intelligence"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Adabook and Multibook: adaptive boosting with chance correction(2013-09) Powers, David MartinThere has been considerable interest in boosting and bagging, including the combination of the adaptive techniques of AdaBoost with the random selection with replacement techniques of Bagging. At the same time there has been a revisiting of the way we evaluate, with chance-corrected measures like Kappa, Informedness, Correlation or ROC AUC being advocated. This leads to the question of whether learning algorithms can do better by optimizing an appropriate chance corrected measure. Indeed, it is possible for a weak learner to optimize Accuracy to the detriment of the more reaslistic chance-corrected measures, and when this happens the booster can give up too early. This phenomenon is known to occur with conventional Accuracy-based AdaBoost, and the MultiBoost algorithm has been developed to overcome such problems using restart techniques based on bagging. This paper thus complements the theoretical work showing the necessity of using chance-corrected measures for evaluation, with empirical work showing how use of a chance-corrected measure can improve boosting. We show that the early surrender problem occurs in MultiBoost too, in multiclass situations, so that chance-corrected AdaBook and Multibook can beat standard Multiboost or AdaBoost, and we further identify which chance-corrected measures to use when.Item Evaluation: from Precision, Recall and F-measure to ROC, Informedness, Markedness and Correlation(Bioinfo Publications, 2011-12-15) Powers, David MartinCommonly used evaluation measures including Recall, Precision, F-Measure and Rand Accuracy are biased and should not be used without clear understanding of the biases, and corresponding identification of chance or base case levels of the statistic. Using these measures a system that performs worse in the objective sense of Informedness, can appear to perform better under any of these commonly used measures. We discuss several concepts and measures that reflect the probability that prediction is informed versus chance. Informedness and introduce Markedness as a dual measure for the probability that prediction is marked versus chance. Finally we demonstrate elegant connections between the concepts of Informedness, Markedness, Correlation and Significance as well as their intuitive relationships with Recall and Precision, and outline the extension from the dichotomous case to the general multi-class case.