Computer Science, Engineering and Mathematics
Permanent URI for this community
The School of Computer Science, Engineering and Mathematics is a multidisciplinary school focussing on best practice teaching, research, research training and consulting in the areas of Computer Science, Engineering, Information Technology, Mathematics and Statistics.
Browse
Browsing Computer Science, Engineering and Mathematics by Author "Al-Dirini, Rami M A"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Evaluating the primary stability of standard vs lateralised cementless femoral stems – A finite element study using a diverse patient cohort(Elsevier, 2018-09-05) Al-Dirini, Rami M A; Martelli, Saulo; Huff, Daniel; Zhang, Ju; Clement, John G; Besier, Thor; Taylor, MarkBackground Restoring the original femoral offset is desirable for total hip replacements as it preserves the original muscle lever arm and soft tissue tensions. This can be achieved through lateralised stems, however, the effect of variation in the hip centre offset on the primary stability remains unclear. Methods Finite element analysis was used to compare the primary stability of lateralised and standard designs for a cementless femoral stem (Corail®) across a representative cohort of male and female femora (N = 31 femora; age from 50 to 80 years old). Each femur model was implanted with three designs of the Corail® stem, each designed to achieve a different degree of lateralisation. An automated algorithm was used to select the size and position that achieve maximum metaphyseal fit for each of the designs. Joint contact and muscle forces simulating the peak forces during level gait and stair climbing were scaled to the body mass of each subject. Findings The study found that differences in restoring the native femoral offset introduce marginal differences in micromotion (differences in peak micromotion <21 μm), for most cases. Nonetheless, significant reduction in the interfacial strains (>3000 με) was achieved for some subjects when lateralized stems were used. Interpretation Findings of this study suggest that, with the appropriate size and alignment, the standard offset design is likely to be sufficient for primary stability, in most cases. Nonetheless, appropriate use of lateralised stems has the potential reduce the risk of peri-prosthetic bone damage. This highlights the importance of appropriate implant selection during the surgical planning stage.Item Virtual trial to evaluate the robustness of cementless femoral stems to patient and surgical variation(Elsevier, 2018-11-15) Al-Dirini, Rami M A; Martelli, Saulo; O'Rourke, Dermot; Huff, Daniel; Zhang, Ju; Clement, John G; Besier, Thor; Taylor, MarkPrimary stability is essential for the success of cementless femoral stems. In this study, patient specific finite element (FE) models were used to assess changes in primary stability due to variability in patient anatomy, bone properties and stem alignment for two commonly used cementless femoral stems, Corail® and Summit® (DePuy Synthes, Warsaw, USA). Computed-tomography images of the femur were obtained for 8 males and 8 females. An automated algorithm was used to determine the stem position and size which minimized the endo-cortical space, and then span the plausible surgical envelope of implant positions constrained by the endo-cortical boundary. A total of 1952 models were generated and ran, each with a unique alignment scenario. Peak hip contact and muscle forces for stair climbing were scaled to the donor’s body weight and applied to the model. The primary stability was assessed by comparing the implant micromotion and peri-prosthetic strains to thresholds (150 μm and 7000 µε, respectively) above which fibrous tissue differentiation and bone damage are expected to prevail. Despite the wide range of implant positions included, FE prediction were mostly below the thresholds (medians: Corail®: 20–74 µm and 1150–2884 µε, Summit®: 25–111 µm and 860–3010 µε), but sensitivity of micromotion and interfacial strains varied across femora, with the majority being sensitive (p < 0.0029) to average bone mineral density, cranio-caudal angle, post-implantation anteversion angle and lateral offset of the femur. The results confirm the relationship between implant position and primary stability was highly dependent on the patient and the stem design used.