Paleontology Collected Works
Permanent URI for this collection
Browse
Browsing Paleontology Collected Works by Author "Ahlberg, Per E"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Copulation in antiarch placoderms and the origin of gnathostome internal fertilisation(Nature Publishing Group, 2014-10-19) Long, John A; Mark-Kurik, Elga; Johanson, Zerina; Lee, Michael S Y; Young, Gavin C; Min, Zhu; Ahlberg, Per E; Newman, Michael; Jones, Roger; den Blaauwen, Jan; Choo, Brian; Trinajstic, KateReproduction in jawed vertebrates (gnathostomes) involves either external or internal fertilization. It is commonly argued that internal fertilization can evolve from external, but not the reverse. Male copulatory claspers are present in certain placoderms, fossil jawed vertebrates retrieved as a paraphyletic segment of the gnathostome stem group in recent studies. This suggests that internal fertilization could be primitive for gnathostomes, but such a conclusion depends on demonstrating that copulation was not just a specialized feature of certain placoderm subgroups. The reproductive biology of antiarchs, consistently identified as the least crownward placoderms and thus of great interest in this context, has until now remained unknown. Here we show that certain antiarchs possessed dermal claspers in the males, while females bore paired dermal plates inferred to have facilitated copulation. These structures are not associated with pelvic fins. The clasper morphology resembles that of ptyctodonts, a more crownward placoderm group, suggesting that all placoderm claspers are homologous and that internal fertilization characterized all placoderms. This implies that external fertilization and spawning, which characterize most extant aquatic gnathostomes, must be derived from internal fertilization, even though this transformation has been thought implausible. Alternatively, the substantial morphological evidence for placoderm paraphyly must be rejected.Item The cranial endocast of Dipnorhynchus sussmilchi (Sarcopterygii: Dipnoi) and the interrelationships of stem-group lungfishes(PeerJ, 2016-10-20) Clement, Alice M; Challands, T J; Long, John A; Ahlberg, Per EThe first virtual cranial endocast of a lungfish from the Early Devonian, Dipnorhynchus sussmilchi, is described. Dipnorhynchus, only the fourth Devonian lungfish for which a near complete cranial endocast is known, is a key taxon for clarifying primitive character states within the group. A ventrally-expanded telencephalic cavity is present in the endocast of Dipnorhynchus demonstrating that this is the primitive state for "true'' Dipnoi. Dipnorhynchus also possesses a utricular recess differentiated from the sacculolagenar pouch like that seen in stratigraphically younger lungfish (Dipterus, Chirodipterus, Rhinodipterus), but absent from the dipnomorph Youngolepis. We do not find separate pineal and para-pineal canals in contrast to a reconstruction from previous authors. We conduct the first phylogenetic analysis of Dipnoi based purely on endocast characters, which supports a basal placement of Dipnorhynchus within the dipnoan stem group, in agreement with recent analyses. Our analysis demonstrates the value of endocast characters for inferring phylogenetic relationships.Item Early Gnathostome Phylogeny Revisited: Multiple Method Consensus(Public Library of Science, 2016) Qiao, Tuo; King, Benedict; Long, John A; Ahlberg, Per E; Zhu, MinA series of recent studies recovered consistent phylogenetic scenarios of jawed vertebrates, such as the paraphyly of placoderms with respect to crown gnathostomes, and antiarchs as the sister group of all other jawed vertebrates. However, some of the hylogenetic relationships within the group have remained controversial, such as the positions of Entelognathus, ptyctodontids, and the Guiyu-lineage that comprises Guiyu, Psarolepis and Achoania. The revision of the dataset in a recent study reveals a modified phylogenetic hypothesis, which shows that some of these phylogenetic conflicts were sourced from a few inadvertent miscodings. The interrelationships of early gnathostomes are addressed based on a combined new dataset with 103 taxa and 335 characters, which is the most comprehensive morphological dataset constructed to date. This dataset is investigated in a phylogenetic context using maximum parsimony (MP), Bayesian inference (BI) and maximum likelihood (ML) approaches in an attempt to explore the consensus and incongruence between the hypotheses of early gnathostome interrelationships recovered from different methods. Our findings consistently corroborate the paraphyly of placoderms, all `acanthodians' as a paraphyletic stem group of chondrichthyans, Entelognathus as a stem gnathostome, and the Guiyu-lineage as stem sarcopterygians. The incongruence using different methods is less significant than the consensus, and mainly relates to the positions of the placoderm Wuttagoonaspis, the stem chondrichthyan Ramirosuarezia, and the stem osteichthyan LophosteusÐthe taxa that are either poorly known or highly specialized in character complement. Given that the different performances of each phylogenetic approach, our study provides an empirical case that the multiple phylogenetic analyses of morphological data are mutually complementary rather than redundant.Item A new method for reconstructing brain morphology: applying the brain-neurocranial spatial relationship in an extant lungfish to a fossil endocast(The Royal Society, 2016) Clement, Alice M; Strand, R; Nysjo, J; Long, John A; Ahlberg, Per ELungfish first appeared in the geological record over 410 million years ago and are the closest living group of fish to the tetrapods. Palaeoneurological investigations into the group show that unlike numerous other fishes—but more similar to those in tetrapods—lungfish appear to have had a close fit between the brain and the cranial cavity that housed it. As such, researchers can use the endocast of fossil taxa (an internal cast of the cranial cavity) both as a source of morphological data but also to aid in developing functional and phylogenetic implications about the group. Using fossil endocast data from a three-dimensional-preserved Late Devonian lungfish from the Gogo Formation, Rhinodipterus, and the brain-neurocranial relationship in the extant Australian lungfish, Neoceratodus, we herein present the first virtually reconstructed brain of a fossil lungfish. Computed tomographic data and a newly developed ‘brain-warping’ method are used in conjunction with our own distance map software tool to both analyse and present the data. The brain reconstruction is adequate, but we envisage that its accuracy and wider application in other taxonomic groups will grow with increasing availability of tomographic datasets.